NUMEROUS SERIES (I - PART)

Consider a number series $a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}+\ldots \ldots . .=\sum_{n=1}^{\infty} a_{n}$ with positive members.
The sum is $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots+\mathrm{a}_{\mathrm{n}}=\sum_{k=1}^{n} a_{k}$, and we call it partial sum.
We are looking for $\lim _{n \rightarrow \infty} S_{n}$.
If $\lim _{n \rightarrow \infty} S_{n}=\mathrm{S}$ (number) then series converges, and if $\lim _{n \rightarrow \infty} S_{n}= \pm \infty$ or does not exist, then the series diverges.
Partial sums are in fact:
$S_{1}=a_{1}$
$S_{2}=a_{1}+a_{2}$
$S_{3}=a_{1}+a_{2}+a_{3}$
$S_{n}=a_{1}+a_{2}+a_{3}+\ldots a_{n}$

Example 1.

For a given series $\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\ldots+\frac{1}{(3 n-2) \cdot(3 n+1)}+\ldots \ldots$. determine S_{n} and found $\lim _{n \rightarrow \infty} S_{n}$.

Solution:

$S_{n}=\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\ldots+\frac{1}{(3 n-2) \cdot(3 n+1)}$

Decomposes a rational function on FACTORS:
$\left.\frac{1}{(3 n-2) \cdot(3 n+1)}=\frac{A}{3 n-2}+\frac{B}{3 n+1} \ldots \ldots\right) \cdot(3 n+1)$
$1=A(3 n+1)+B(3 n-2)$
$1=3 A n+A+3 B n-2 B$
$1=(3 A+3 B) n+A-2 B$ \qquad .Compares :

$$
\begin{aligned}
& 3 A+3 B=0 \\
& \begin{array}{l}
A-2 B=1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots3) \\
3 A+3 B=0 \\
-3 A+6 B=-3
\end{array} \\
& 9 B=-3 \rightarrow B=-\frac{1}{3} \rightarrow A=\frac{1}{3} \\
& \frac{1}{(3 n-2) \cdot(3 n+1)}=\frac{\frac{1}{3}}{3 n-2}+\frac{-\frac{1}{3}}{3 n+1}=\frac{1}{3}\left(\frac{1}{3 n-2}-\frac{1}{3 n+1}\right)
\end{aligned}
$$

Now we return to the task and this applies to each addend of the series:

$$
\begin{aligned}
& S_{n}=\frac{1}{3}\left[\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{10}\right)+\ldots .+\left(\frac{1}{3 n-5}-\frac{1}{3 n-2}\right)+\left(\frac{1}{3 n-2}-\frac{1}{3 n+1}\right)\right] \\
& \left.S_{n}=\frac{1}{3}\left[1-\frac{1}{4}+\frac{\gamma}{4}-\frac{1}{\chi}+\frac{1}{又}-\frac{1}{10}+\ldots .+\frac{1}{3 n-5}-\frac{1}{3 n-2}+\frac{1}{3 n-2}-\frac{1}{3 n+1}\right)\right] \\
& \left.S_{n}=\frac{1}{3}\left[1-\frac{1}{3 n+1}\right)\right] \\
& \left.\left.\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{1}{3}\left[1-\frac{1}{3 n+1}\right)\right]=\frac{1}{3} \lim _{n \rightarrow \infty}\left[1-\frac{1}{3 n+1}\right)\right]=\frac{1}{3} \\
& S=\frac{1}{3} \\
& S \text { teï } 0
\end{aligned}
$$

Example 2.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{2 n-1}{3 n+2}$

Solution:

Here is our job easy! Theorem is true:

If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$, if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then line certainly does not converge.
Therefore, we ask $\lim _{n \rightarrow \infty} \frac{2 n-1}{3 n+2}$ and we know that $\lim _{n \rightarrow \infty} \frac{2 n-1}{3 n+2}=\frac{2}{3} \neq 0$, we are confident that this series diverges.

Example 3.

Examine the convergence of series: $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

Solution:

First we will examine: $\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=\frac{1}{\infty}=0$. Does this mean that series converges? NO!

It may converge or diverges, the theorem helps in a situation when we get some number $\neq 0$ for the solution, and then we are sure that the series diverges. Thus we have to investigate further...
$S_{2^{1}}=S_{2}=1+\frac{1}{3}$
$S_{2^{2}}=S_{4}=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}$
.......etc.
$S_{2^{m}}=\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\ldots \ldots . .+\frac{1}{2 \cdot 2^{m}-1}$
then:
$S_{2^{m}}=\left(\frac{1}{1}+\frac{1}{3}\right)+\left(\frac{1}{5}+\frac{1}{7}\right)+\left(\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}\right) \ldots \ldots . .+\left(\frac{1}{2^{m}+1}+\frac{1}{2^{m}+3}+\ldots+\frac{1}{2 \cdot 2^{m}-1}\right)$
It is obvious that:
$\frac{1}{1}+\frac{1}{3}>1$
$\frac{1}{5}+\frac{1}{7}>\frac{1}{8}+\frac{1}{8}=\frac{1}{4}$
$\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}>\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{1}{4}$
$\frac{1}{2^{m}+1}+\frac{1}{2^{m}+3}+\ldots+\frac{1}{2 \cdot 2^{m}-1}>\frac{2^{m-1}}{2^{m+1}}=\frac{1}{4}$
we have:
$S_{2^{m}}>1+\frac{m-1}{4}$
As is $\lim _{m \rightarrow \infty}\left(1+\frac{m-1}{4}\right)=\infty$, this tells us that a series diverges!

Example 4.

Examine the convergence of series: $\sum_{n=1}^{\infty} \frac{1}{n}$.

Solution:

And here is a similar situation as just: $\lim _{n \rightarrow \infty} \frac{1}{n}=\frac{1}{\infty}=0$.
We use a similar trick as in the previous task...
We are looking at a series of partial sums $S_{k}, k \in N$ that is always growing. His subsequence $S_{2^{m}}, m \in N$ is:
$S_{2^{1}}=S_{2}=1+\frac{1}{2}$
$S_{2^{2}}=S_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$
.......etc.
$S_{2^{m}}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots+\frac{1}{2^{m-1}+1}+\frac{1}{2^{m-1}+2}+\cdots+\frac{1}{2^{m}}$
Group members :
$S_{2^{m}}=\frac{1}{1}+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots+\left(\frac{1}{2^{m-1}+1}+\frac{1}{2^{m-1}+2}+\cdots+\frac{1}{2^{m}}\right)$
$\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}$
$\cdots \cdots \cdots$
$\frac{1}{2^{m-1}+1}+\frac{1}{2^{m-1}+2}+\cdots+\frac{1}{2^{m}}>\frac{1}{2^{m}}+\frac{1}{2^{m}}+\cdots+\frac{1}{2^{m}}=\frac{1}{2}$

We have:
$S_{2^{m}}>1+\frac{m}{2}$

Here is $\lim _{m \rightarrow \infty}\left(1+\frac{m}{2}\right)=\infty$, and series diverges.

Cauchy criteria (test)

Necessary and sufficient condition for $\sum_{n=1}^{\infty} a_{n}$ to converges is that for arbitrary $\varepsilon>0$, there is a natural number $N=N(\varepsilon)$ so that for $n>0 \wedge p>0$ is true : $\quad\left|S_{n+p}-S_{n}\right|<\varepsilon$

Example 5.

Using the Cauchy criteria, prove that series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution:

In the previous example we prove that this series diverges. Now our job is to prove that using the Cauchy test.
Consider that $\mathbf{p}=\mathbf{n}$. Then we have:
$\left|S_{n+n}-S_{n}\right|=\left|S_{2 n}-S_{n}\right|=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots \ldots .+\frac{1}{2 n}$
As is :
$\frac{1}{n+1}>\frac{1}{2 n}$
$\frac{1}{n+2}>\frac{1}{2 n}$
$\frac{1}{n+3}>\frac{1}{2 n}$

This back up and get:
$\left|S_{n+n}-S_{n}\right|=\left|S_{2 n}-S_{n}\right|=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots \ldots .+\frac{1}{2 n}>n \cdot \frac{1}{2 n}=\frac{1}{2}$

If we initially take to, say $\varepsilon=\frac{1}{4}$ and we have that $\varepsilon>\frac{1}{2}$, We can conclude that the series diverges.

Example 6.

Using the Cauchy criteria, prove that series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ diverges.

Solution:

Take that $\varepsilon=\frac{1}{4}$ and $\mathbf{p}=\mathbf{n}$. We have:
$\left|S_{n+n}-S_{n}\right|=\left|S_{2 n}-S_{n}\right|=\frac{1}{\sqrt{(n+1)(n+2)}}+\frac{1}{\sqrt{(n+2)(n+3)}}+\ldots \ldots .+\frac{1}{\sqrt{2 n(2 n+1)}}$

Now think:
$(n+1)(n+2)<(n+2)^{2} \rightarrow \frac{1}{(n+1)(n+2)}<\frac{1}{(n+2)^{2}} \rightarrow \frac{1}{\sqrt{(n+1)(n+2)}}<\frac{1}{\sqrt{(n+2)^{2}}} \rightarrow \sqrt{\frac{1}{\sqrt{(n+1)(n+2)}}<\frac{1}{n+2}}$
$(n+2)(n+3)<(n+3)^{2} \rightarrow \frac{1}{(n+2)(n+3)}<\frac{1}{(n+3)^{2}} \rightarrow \frac{1}{\sqrt{(n+2)(n+3)}}<\frac{1}{\sqrt{(n+3)^{2}}} \rightarrow \sqrt{\frac{1}{\sqrt{(n+2)(n+3)}}<\frac{1}{n+3}}$

And so on.

Now, we have :

$$
\begin{aligned}
\left|S_{n+n}-S_{n}\right|=\left|S_{2 n}-S_{n}\right| & =\frac{1}{\sqrt{(n+1)(n+2)}}+\frac{1}{\sqrt{(n+2)(n+3)}}+\ldots \ldots .+\frac{1}{\sqrt{2 n(2 n+1)}}> \\
& >\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{2 n+1}>\frac{1}{4}
\end{aligned}
$$

We prove that this series diverges.

Comparable criteria:

Valid for two series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$
i) If $\mathrm{a}_{\mathrm{n}}<\mathrm{b}_{\mathrm{n}}$ then a) $\sum_{n=1}^{\infty} b_{n}$ convergent $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ convergent

$$
\text { b) } \sum_{n=1}^{\infty} a_{n} \text { divergent } \Rightarrow \sum_{n=1}^{\infty} b_{n} \text { divergent }
$$

ii) If $\frac{a_{n+1}}{a_{n}}<\frac{b_{n+1}}{b_{n}}$ then a) $\sum_{n=1}^{\infty} b_{n}$ convergent $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ convergent
b) $\sum_{n=1}^{\infty} a_{n}$ divergent $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ divergent
iii) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=M,(\mathrm{M} \neq 0$ and M is a finite number $)$ series simultaneously are convergent or divergent Most often series we used for comparison is $\sum_{n=1}^{\infty} \frac{1}{n^{k}}$; for $\mathbf{k}>1$ series is convergent, for $\mathbf{k} \leq \mathbf{1}$ is divergent.

Example 7.

Examine the convergence of series: $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

Solution:

Think:
$2 n-1>n \quad$ starting from $\mathrm{n}=2$, so:
$\frac{1}{2 n-1}<\frac{1}{n}$

As the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ diverges by the comparative criteria
Some teachers do this directly:
$\frac{1}{2 n-1} \sim \frac{1}{2 n}$ when $n \rightarrow \infty$

Then is $\sum_{n=1}^{\infty} \frac{1}{2 n}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$, and conclude that a given series diverges.

Example 8.

Examine the convergence of series: $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}}$

Solution:

We will use the faster way, and you of course work to your professor requires ...
$\frac{1}{n \sqrt{n+1}} \sim \frac{1}{n(n+1)^{\frac{1}{2}}} \sim \frac{1}{n^{1} \cdot n^{\frac{1}{2}}}=\frac{1}{n^{\frac{3}{2}}}$ when $n \rightarrow \infty$.

Mark \sim mean that these expressions behave similarly when $n \rightarrow \infty$
Series $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges, so converges and order $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}}$.
Of course, we could have used comparable criteria, where $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is for comparison.

Example 9.

Examine the convergence of series: $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt[3]{n}}$

Solution:

Here we first make a rationalization:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt[3]{n}} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(\sqrt{n+1})^{2}-(\sqrt{n})^{2}}{\sqrt[3]{n} \cdot(\sqrt{n+1}+\sqrt{n})}=\sum_{n=1}^{\infty} \frac{n+1-n}{\sqrt[3]{n} \cdot(\sqrt{n+1}+\sqrt{n})}= \\
& =\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} \cdot(\sqrt{n+1}+\sqrt{n})}
\end{aligned}
$$

Now, think:
$\frac{1}{\sqrt[3]{n} \cdot(\sqrt{n+1}+\sqrt{n})} \sim \frac{1}{\sqrt[3]{n} \cdot(\sqrt{n}+\sqrt{n})}=\frac{1}{n^{\frac{1}{3}} \cdot 2 n^{\frac{1}{2}}}=\frac{1}{2 n^{\frac{5}{6}}} \quad$ when $n \rightarrow \infty$
So, we have $\sum_{n=1}^{\infty} \frac{1}{2 n^{\frac{5}{6}}}=\frac{1}{2}\left[\sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{6}}}\right.$, this series diverges and series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt[3]{n}}$ diverges to.

Example 10.

Examine the convergence of series: $\sum_{n=1}^{\infty} \sin \frac{\alpha}{n}$

Solution:

Here we use $\sin \frac{\alpha}{n} \sim \frac{\alpha}{n}$ when $n \rightarrow \infty$
We have : $\sum_{n=1}^{\infty} \frac{\alpha}{n}=\alpha \cdot \sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so $\sum_{n=1}^{\infty} \sin \frac{\alpha}{n}$ diverges.

Example 11.

Examine the convergence of series $\sum_{n=1}^{\infty} \frac{n \sin \frac{1}{n}}{\sqrt{n^{2}+1}}$

Solution:

When $n \rightarrow \infty$ there are $\sin \frac{1}{n} \sim \frac{1}{n}$ and $\sqrt{n^{2}+1} \sim \sqrt{n^{2}} \sim n$,so, we have :
$\frac{n \sin \frac{1}{n}}{\sqrt{n^{2}+1}} \sim \frac{n \cdot \frac{1}{n}}{n}=\frac{1}{n}$
$\sum_{n=1}^{\infty} \frac{1}{n}$ diverges , and $\sum_{n=1}^{\infty} \frac{n \sin \frac{1}{n}}{\sqrt{n^{2}+1}}$ diverges .

In the next file we continue with the criteria for convergence ...

