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NUMEROUS SERIES ( I - PART) 

 

 

Consider a number series 1 2 3

1

....... .......n n

n

a a a a a
∞

=

+ + + + + =∑  with positive members. 

The sum  is  Sn= a1+a2+a3+…+an=∑
=

n

k

ka
1

 , and  we call it partial sum. 

 

We are looking for  n
n
S

∞→
lim . 

 

If   n
n
S

∞→
lim =S (number )  then series  converges,  and if  n

n
S

∞→
lim = ∞±  or does not exist, then the series diverges. 

 

Partial sums are in fact: 

 

1 1

2 1 2

3 1 2 3

1 2 3

...

...

...

n n

S a

S a a

S a a a

S a a a a

=

= +

= + +

= + + +

 

 

 

 

Example 1. 

 

 

For a given  series  
1 1 1

... .......
1 4 4 7 (3 2) (3 1)n n

+ + + +
⋅ ⋅ − ⋅ +

 determine nS  and found n
n
S

∞→
lim . 

 

Solution: 

 

 

1 1 1
...

1 4 4 7 (3 2) (3 1)
nS

n n
= + + +

⋅ ⋅ − ⋅ +
 

 

 

Decomposes a rational function on FACTORS: 

 

1
....................................... / *(3 2) (3 1)

(3 2) (3 1) 3 2 3 1

1 (3 1) (3 2)

1 3 3 2

1 (3 3 ) 2 ...........................Compares :

A B
n n

n n n n

A n B n

An A Bn B

A B n A B

= + − ⋅ +
− ⋅ + − +

= + + −

= + + −

= + + −
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3 3 0

2 1........................ / *( 3)

3 3 0

3 6 3

1 1
9 3

3 3

1 1

1 1 1 13 3 ( )
(3 2) (3 1) 3 2 3 1 3 3 2 3 1

A B

A B

A B

A B

B B A

n n n n n n

+ =

− = −

+ =

− + = −

= − → = − → =

−

= + = −
− ⋅ + − + − +

 

 

Now we return to the task and this applies to each addend of the series: 

 

1 1 1 1 1 1 1 1 1 1
[(1 ) ( ) ( ) .... ( ) ( )]

3 4 4 7 7 10 3 5 3 2 3 2 3 1

1 1
[1

3 4

n

n

S
n n n n

S

= − + − + − + + − + −
− − − +

= −
1

4
+

1

7
−

1

7
+

1

10
−

1
....

3 5n
+ +

−

1

3 2n
−

−

1

3 2n
+

−

 0

1
)]

3 1

1 1
[1 )]

3 3 1

1 1 1 1 1
lim lim [1 )] lim[1 )]

3 3 1 3 3 1 3

1

3

n

n
n n n

teži

n

S
n

S
n n

S

→∞ →∞ →∞

−
+

= −
+

= − = − =
+ +

=

 

 

 

 

 

Example 2. 

 

Examine the convergence of  series 
1

2 1

3 2n

n

n

∞

=

−

+
∑  

 

 

Solution: 

 

Here is our job easy! Theorem is true: 

 

If the  series ∑
∞

=1n

na  converges , then  n
n
a

∞→
lim =0,  if  n

n
a

∞→
lim ≠ 0 then line certainly does not converge. 

 

Therefore, we ask   
2 1

lim
3 2n

n

n→∞

−

+
  and we know that   

2 1 2
lim 0

3 2 3n

n

n→∞

−
= ≠

+
 , we are confident that this series diverges. 
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Example 3. 

 

Examine the convergence of  series:  
1

1

2 1n n

∞

= −
∑  

 

Solution: 

 

 

First we will examine:   
1 1

lim 0
2 1n n→∞

= =
− ∞

 . Does this mean that series converges? NO! 

 

It may converge or diverges , the theorem helps in a situation when we get some number 0≠  for the solution, and then  

 

we  are sure that the series diverges.   Thus we have to investigate further… 

 

 

1

2

22

42

2

2

1
1

3

1 1 1
1

3 5 7

....... .

1 1 1 1 1 1 1
.......

1 3 5 7 9 11 13 1

1 1 1 1 1 1 1 1
( ) ( ) ( ).......
1 3 5

1

2 2

:

1 1

7 9 11 13 15 1

It is obvious that

1 1
1

1 3

1 1 1 1 1

5 7 8 8 4

1 1

9

1
( ... )
2 3

1

1 2 2 2

:

m

m

m

m m m

S S

S S

etc

S

then

S

+
⋅

+ + + +
+ +

= = +

= = + + +

= + + + + + + +
−

= + + + + + + +
−

+ >

+ > + =

+

⋅

1

1

2

1 1 1 1 1 1 1

1 13 15 16 16 16 16 4

.......

1

1

1 1 1 2 1
...

2 1 2 3 2 2 2 4

we hav

4

e

1

:

m

m

m m m m

m
S

−

+
+ + + > =

+ +

+ + > + + + =

−

−
> +

⋅
 

 

As is  
1

lim(1 )
4m

m

→∞

−
+ = ∞  , this tells us that a series diverges! 

 
 

 

 



 4 

Example 4. 

 

 

Examine the convergence of  series:  
1

1

n n

∞

=

∑ . 

 

 

Solution: 

 

 

And here is a similar situation as just:  
1 1

lim 0
n n→∞

= =
∞

. 

 

We use a similar trick as in the previous task… 

 

We are looking at a series of partial sums ,kS k N∈  that is always growing. His subsequence 
2
,mS m N∈  is: 

 

1

2

1

22

42

1

2 1 1

2

1
1

2

1 1 1
1

2 3 4

....... .

1 1 1 1 1 1 1 1
...

1 2 3 4 5 6 7 8

Group members :

1 1 1 1 1 1 1 1
( ) ( ) ... (

1 2 3 4 5 6 7 8

1 1 1 1 1

3 4 4 4 2

1 1 1

1 1 1

2 1 2 2 2

1 1 1
)

2 1 2 2

1 1 1 1

5

2

6 7 8 8 8 8

m

m

m m m

m m m

S S

S S

etc

S

S

− −

− −

= = +

= = + + +

= + + + + + + + + +

= + + + + + + + + +

+ > + =

+

+ + +
+ +

+ + +
+ +

+ + > + + +

⋯

⋯

1

2

1

1 1 1 1 1 1 1

2 1 2 2

1

2 2 2 2 2

We hav

1

8 2

......

1
2

e:

.

m

m m m m m m

m
S

− −
+ + + > + +

=

+ =
+

>

+

+

⋯ ⋯

 

 

Here is lim(1 )
2m

m

→∞
+ = ∞ , and series diverges. 
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Cauchy criteria (test) 

Necessary and sufficient condition for  ∑
∞

=1n

na to  converges is that for arbitrary 0ε > , there is a natural number 

( )N N ε=   so that  for 0 0n p> ∧ >   is true :        n p nS S ε
+
− <  

 

 

 

Example 5. 

 

 

Using the Cauchy criteria ,  prove that series 
1

1

n n

∞

=

∑   diverges. 

 

 

Solution: 

 

 

In the previous example we prove that this series diverges. Now our job is to prove that using the Cauchy test. 

 

Consider that p = n. Then we have: 

 

2

1 1 1 1
.......

1 2 3 2
n n n n nS S S S

n n n n
+
− = − = + + + +

+ + +
 

 

As is : 

1 1

1 2

1 1

2 2

1 1

3 2

.......

n n

n n

n n

>
+

>
+

>
+

 

 

 

This back up and get: 

 

 

2

1 1 1 1 1 1
.......

1 2 3 2 2 2
n n n n nS S S S n

n n n n n
+
− = − = + + + + > ⋅ =

+ + +
 

 

 

If we initially take to, say  
1

4
ε =  and we have that  

1

2
ε > , We can conclude that the series diverges. 
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Example 6. 

 

Using the Cauchy criteria ,  prove that series  
1

1

( 1)n n n

∞

= +
∑  diverges. 

 

Solution: 

 

 

Take that  
1

4
ε =   and   p = n.   We have: 

 

 

2

1 1 1
.......

( 1)( 2) ( 2)( 3) 2 (2 1)
n n n n nS S S S

n n n n n n
+
− = − = + + +

+ + + + +
 

 

 

Now think: 

 

 

2

2 2

2

2 2

1 1 1 1 1 1
( 1)( 2) ( 2)

( 1)( 2) ( 2) 2( 1)( 2) ( 1)( 2)( 2)

1 1 1 1 1 1
( 2)( 3) ( 3)

( 2)( 3) ( 3) 3( 2)( 3) ( 2)( 3)( 3)

............

n n n
n n n nn n n nn

n n n
n n n nn n n nn

+ + < + → < → < → <
+ + + ++ + + ++

+ + < + → < → < → <
+ + + ++ + + ++

 

 

 

And so on. 

 

Now, we have : 

 

 

2

1 1 1
.......

( 1)( 2) ( 2)( 3) 2 (2 1)

1 1 1 1
                                ...

2 3 2 1 4

n n n n nS S S S
n n n n n n

n n n

+
− = − = + + + >

+ + + + +

> + + + >
+ + +

 

 

 

 

We prove that this series diverges. 
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Comparable criteria:   

 Valid for two series ∑
∞

=1n

na  and    ∑
∞

=1n

nb  

i)          If    an< bn   then   a) ∑
∞

=1n

nb  convergent ⇒   ∑
∞

=1n

na  convergent 

                                                b) ∑
∞

=1n

na  divergent ⇒   ∑
∞

=1n

nb  divergent 

ii) If  
n

n

n

n

b

b

a

a 11 ++
< then   a)  ∑

∞

=1n

nb  convergent ⇒   ∑
∞

=1n

na  convergent 

                                  b)  ∑
∞

=1n

na  divergent ⇒   ∑
∞

=1n

nb  divergent 

iii) If  M
b

a

n

n

n
=

∞→
lim ,  (M≠ 0 and M is a finite number ) series simultaneously are  convergent  or divergent 

 

Most often series we used for comparison is ∑
∞

=1

1

n
kn

  ;  for k>1series is convergent , for k≤  1 is divergent. 

 

Example 7. 

 

Examine the convergence of  series:   
1

1

2 1n n

∞

= −
∑  

 

Solution: 

 

Think: 

 
2 1     starting from n=2,  so:

1 1

2 1

n n

n n

− >

<
−

 

As the series 
1

1

n n

∞

=

∑  diverges , series 
1

1

2 1n n

∞

= −
∑  diverges by  the comparative criteria 

Some teachers do this directly: 

 

1 1

2 1 2n n−
∼   when   n→∞  

 

Then is 
1 1

1 1 1

2 2n nn n

∞ ∞

= =

=∑ ∑  , and conclude that a given series diverges. 
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Example  8. 

 

Examine the convergence of  series:  
1

1

1n n n

∞

= +
∑  

 

Solution: 

 

We will use the faster way, and you of course work to your professor requires … 

 

1 1 3

12 2 2

1 1 1 1

1
( 1)

n n
n n n n n

=
+

+ ⋅

∼ ∼   when   n→∞ .   

 

Mark ∼  mean that these expressions behave similarly when n→∞  

 

Series 
3

1 2

1

n
n

∞

=

∑  converges , so  converges and order 
1

1

1n n n

∞

= +
∑ . 

Of course, we could have used comparable criteria, where 
2

1

1

n n

∞

=

∑  is for comparison. 

 

Example 9. 

 

Examine the convergence of  series:   
3

1

1

n

n n

n

∞

=

+ −
∑  

 

Solution: 

 

Here we first  make a rationalization: 

 
2 2

3 3 3
1 1 1

3
1

1 1 ( 1) ( ) 1

1 ( 1 ) ( 1 )

1

( 1 )

n n n

n

n n n n n n n n

n n n n n n n n n

n n n

∞ ∞ ∞

= = =

∞

=

+ − + + + − + −
⋅ = = =

+ + ⋅ + + ⋅ + +

=
⋅ + +

∑ ∑ ∑

∑  

Now, think: 

 

1 513 3

3 62

1 1 1 1

( 1 ) ( )
2 2

n n n n n n
n n n

= =
⋅ + + ⋅ +

⋅

∼      when n→∞  

 

So, we have  
5 5

1 16 6

1 1 1

2
2

n n
n n

∞ ∞

= =

=∑ ∑  , this series diverges and series 
3

1

1

n

n n

n

∞

=

+ −
∑  diverges to. 
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Example 10. 

 

Examine the convergence of  series: 
1

sin
n n

α∞

=

∑  

 

Solution: 

 

Here we use  sin
n n

α α
∼   when n→∞  

 

We have :  
1 1

1

n nn n

α
α

∞ ∞

= =

= ⋅∑ ∑  diverges, so 
1

sin
n n

α∞

=

∑   diverges. 

 

 

Example 11. 

 

Examine the convergence of  series 
2

1

1
sin

1n

n
n

n

∞

= +
∑  

 

 

Solution: 

 

 

 

When  n→∞  there are  
1 1

sin
n n
∼    and    2 21n n n+ ∼ ∼ ,so, we have : 

 

2

1 1
sin

1

1

n n
n n

n nn

⋅

=
+
∼  

 

1

1

n n

∞

=

∑  diverges  , and 
2

1

1
sin

1n

n
n

n

∞

= +
∑   diverges . 

 

 

In the next file we continue with the criteria for convergence ... 

 

 

 

 

 

 

 

 


